INSTRUM BINDERGROUP

PLASTIC PRESSURE REDUCER LPR[®]I

Application

These plastic pressure reducers are used for reducing air and gas pressure in chemical plant construction. The regulator is specially designed for inert-gas blanketing and pressure blanketing agitating tubs, storage tanks and containers with an inert gas such as nitrogen.

The large proportioned, spring-loaded diaphragm actuator with directly-controlled valve seat ensures precise control with low hysteresis. The regulators function without auxillary power supply. High overpressure strength and safe regulator function is achieved by means of the supported diaphragm with long spindle guide. The regulator has a low degree of clearance volume.

Description

chnical dat

The components coming in contact with the product are manufactured from plastic PP/PP_{el}., PVDF, ECTFE or Tantalum. The diaphragm and seals are made of PTFE and the regulator seat is made of perfluoroelastomer (FFKM – Isolast®, Chemraz®, Kalrez®) as standard.

These materials guarantee high corrosion resistance and excellent sealing, even at zero flow.

Model

I PR

PICV

N₂ - supply

Vent in

iechnical uata					
Nominal diameter:	DN 25 / 1 "				
Regulating range P2:	L	to 500 mbar			
Inlet pressure P1:	max. 10 bar				
Vakuum proof					
Pressure connections:	Flange				
Weight:	PP 4,8 kg				
	PVDF 7,1 kg				
	ECTFE 8,7 kg				
*Temperature:	PP, PP _{el.}	-20 ° to + 80 °C			
	PVDF	-20 ° to +140 °C			
	ECTFE	-20 ° to +160 °C			
Testing and inspection:	According to IEC 60534-4				
Pressure tightness:	Bubble tight sealing category VI				

*Dependent on pressure conditions

Model dimensions	pressure connection	а	b	С	d	d1	е
LPRI-025 in plastic design	DN25 PN10 ANSI 1" 150 lbs	Ø 204	58	235	160	80	Ø54

INSTRUM AG • Waldeckstrasse 100 • CH - 4127 Birsfelden / Muttenz Tel: +41 61 3121136 • Fax: +41 61 3121126 • E-Mail: info@instrum.ch • Web: www.instrum.ch

inline design |||| DN 25 ||||

LPS

İW

.....

Model (PCV)

Vent out

product inlet

MODEL CODE LPR®I PLASTIC

inline design

	1			2			3		4		5		6		7
	Desigr	า		Nominal diame pressure conr	eter DN/ lection		Flow capacity		Regulating pressure range		Material		Options		Specials
LP	R	I	-	025		-		-		-		-	•	-	Xn

2 Nominal diameter DN/ Pressure connection

D Flange: А Flan

ge:	DIN EN 1092-1, DN 25 PN 16
ge:	ANSI B 16.5, 1" 150 lbs

3 Flow capacity									
07	Seat	ø7 mm							
12	Seat	ø12 mm							
16	Seat	ø16 mm							

4 Regulating pressure range P2 (mbar)									
L01	2 to 10	L10	16 to 100						
L02	4 to 20	L20	30 to 200						
L05	8 to 50	L50	on request						

5 Material									
iı	Housing/ nternal components/ upper section		Seat seal	Diaphragm/ Regulating range					
Ρ	PP/PP/SS	К	FFKM	Ρ	PTFE/ L				
Y	PP/PVDF/SS	С	FFKM kon- forms to FDA	F	*PTFE/ L				
D	PVDF/PVDF/SS								
V	PVDF/PVDF/SS								
E	PPel./PVDF/SS								
Т	ECTFE/Tantalum/SS								

The housing/internal components/spring housing, seat and diaphragms can be combined in any order.

*PTFE with FKM - Back-up - Diaphragm

6 Options

- D Differential pressure connection
- Е BSP 1/4" external impulse connection

7 Specials

- X0 If you require, for example, PED, special connections,
- rain hood ..., please enter an X in this field with the X1 number of desired Specials. Each of the specials must
- X2 be described in writing. The analysis of materials
- ٠ • 3.1 B and ATEX - certificates cannot be issued for
- plastic models. Xn
- For special versions and certifications, please contact the manufacturer or the appropriate sales representative.

Fl	Flow table [flow quantities in Nm ³ /h]											
P1	[bar rel.]	0.15	0.25	0.40	0.65	1.0	1.5	2.0	4.0	6.0	10	Seat size
	10	10	13	17	21	26	34	40	67	94	136	ø7 mm
=		31	40	51	64	80	101	121	170	235	360	ø12 mm
<u>e</u>		62	80	101	129	160	201	243	375	515	790	ø16 mm
bar												
<u> </u>	100	7	10	14	19	24	34	41	67	85	136	ø7 mm
et)		17	30	42	57	72	101	122	183	236	362	ø12 mm
<u> </u>		34	60	83	113	145	201	243	326	489	791	ø16 mm
N												
<u>م</u>	200	-	6	11	16	22	34	41	67	94	138	ø7 mm
		-	40	51	65	80	101	121	202	240	364	ø12 mm
		-	80	101	129	160	202	242	404	525	793	ø16 mm
		-	00	101	129	100	202	242	404	525	193	חחחטוש

The flow capacity is the same in the supercritical operating range (guide value: $P2 < 0.5 \times P1$). It is recommended to design for operation at a maximum of 70% of the flow values. P2 = regulating pressure P1 = supply pressure

Dependency	v on inlet pressure (pe	r -1 bar / +1 b	ar change in P1)
Seat ø7 mm	- 3 mbar / + 3 mbar	Seat ø16 mm	- 13 mbar / + 13 mbar
Seat ø12 mm	- 8 mbar / + 8 mbar		

Installation

phragm housing.

The preferred installation position is with vertical diaphragm housing and horizontal input. Pressure fixed unit is adjusted in this position. The output pressure increases by approximately 4 mbar for installation with horizontal dia-

The installation position must be specified.

Mounting and start up

- Before connecting the pressure regulator 1 please make sure
- 1.1 to compare the plant data with the name plate
- 1.2 the values marked on the name plate are the 2.2 the setting can be secured with a seal. values measured during our functional inspection
- 1.3 to check the corrosion resistance of the material
- 1.4 to blow out impurities in the pipes
- 1.5 to note the flow direction it is marked with an arrow on the housing
- 1.6 to open inlet pipes slowly.

- LPRI adjust reduced pressure: 2 (Relative pressure)
- 2.1 set a light flow (1Nm³ /h). Set the pressure +/- as required using a hexagonal wrench
- Adjust the LPRI differential pressure (-D) with 3 the servo-regulator
- 3.1 if the D-connection is pressurised with the servo-pressure, the working pressure is added by the servo-pressure.