INSTRUM BINDERGROUP

BACK PRESSURE REGULATOR LPS®T

Application

The self contained low pressure reducing regulators and back pressure regulators controls pressure in mbar range. Applications are for inert gas tank blanketing, reactors, centrifuges and agitating tubs with inert gas such as nitrogen. The regulators are designed to meet requirements in the chemical, pharmaceutical and biotechnology industries and are particularly corrosion resistant and reliable.

Design

The large proportioned, spring-loaded diaphragm actuator with directly-controlled valve seat ensures precise control with low hysteresis. The regulators function without auxillary power supply. High overpressure strength and safe regulator function is achieved by means of the supported diaphragm with long spindle guide. The regulator has a low degree of clearance volume and is self-draining.

Description

The components coming in contact with the product are manufactured from CrNiMo steel 1.4435 / 1.4404. The diaphragm and seals are made of PTFE and the regulator seat is made of perfluoroelastomer (FFKM – Isolast®, Chemraz®, Kalrez®) as standard, or fluoroelastomer (FKM: Viton®). These materials guarantee high corrosion resistance and excellent sealing, even at zero flow. The design has a low degree of clearance volume and is self-draining (suitable for CIP). On request, we can supply regulators in Hastelloy, Tantal or plastic etc. with the appropriate certification.

The surface finish for the stainless-steel version is better than Ra 1.6 for housing parts in contact with the medium, better than Ra 0.8 for internal functional parts and better than Ra 3.2 for the outer housing.

Technical data

Nominal diameter:	DN 25 / 1"					
Regulating range P1:	L	to 500 mbar				
	M	to 5 bar				
	D (pressure difference)	to 4 bar = P3				
Inlet pressure P1:	max. 5 bar					
Vakuum proof						
Pressure connections:	Flange / thread					
	(Special version availal	ble on request)				
Weight:	5,3 kg to 7,9 kg					
Temperature:	-20 ° to +120 °C fo	or EPDM				
(Dependent on	-20 ° to +130 °C fo	or FKM				
pressure conditions)	-20 ° to +160 °C fo	or PTFE				
Testing and inspection:	According to IEC 6	0534-4				
Pressure tightness:	Bubble tight sealing	g category VI				

Section drawing for Hastelloy model and regulating pressure range "M" available on request.

	$(PICV)_{LPR}^{Model}$	Mo L	^{del} (PCV)	
N ₂ - supply		(WV)		-00000
Vent in				Vent out
product outlet		gas room		2 product inlet
Option				P2
	P3			
				م –

Model

Model dimensions	pressure connection	а	b	с	g	d1 x d2	е	f Option "D"	C1 factory setting P1
LPST-025 L	DIN DN25 PN16 ANSI 1" 150 lbs	ø	Ø115 (DIN)	190	290	Standard 100 x 120	Ø38 (M36)	G 1/4" female thread (dimen-	132
LPST-025 M	BSP 1" female thread NPTF 1" female thread	204	Ø108 (ANSI)	208	308	lf desired 100 x 100	sired Ø54 Ø54 (M48) wit	Ø54 (M48) with)	140

INSTRUM GmbH • Buchbrunnenweg 18 • DE - 89081 Ulm Tel: +49 731 96826 0 • Fax: +49 731 96826 99 • E-Mail: info@instrum.de • Web: www.instrum.de

angle design ||| DN 25 |||

Model /

N	MODEL CODING LPS [®] T angle design DN 25														
	1			2			3		4		5		6		7
	Design			Nominal diame pressure conr			Flow capacity		Regulating pressure range		Material		Options		Specials
LP	S	Т	-	025		-		-		-		-	•	-	Xn

21	Nominal c	iameter DN/ Pressure connection	Flo
D A B N	Flange: Thread:	DIN EN 1092-1, B1 DN 25 PN 16 ANSI B 16.5, 1" 150 lbs 1" BSP female thread 1" NPTF female thread	P1
	-1		2 [mbar

3 F	low ca	oacity		
20	Seat	ø20 mm	kv = 5,6	

4 R	egulating pressu	ire ra	inge P1 (mbar)
L01	2 - 10	L50	80 - 500
L02	4 - 20	M01	200 - 1000
L05	8 - 50	M03	500 - 3000
L10	16 - 100	M05	800 - 5000
L20	30 - 200		

5 Material (only the same colours can be combined)										
int	Housing/ ernal components		Seat seal	Diaphragm/ Regulating range						
S	1.4435 (1.4404)/ 1.4435 (1.4404)	К	FEKM	Ρ	PTFE/ L M					
G	1.4435 (1.4404)/ HC 22 (2.4602)	V	FKM	E	EPDM/ L M					
н	HC 22 (2.4602)/ HC 22 (2.4602)	E	EPDM	G	PTFE-glass-fibre reinforced / L.					
		С	FFKM con- forms to FDA	V	FKM/ L M					

Example: Housing/internal components with material code "G" or "H" (red) are only combined with seat of type "K" or "C" and with diaphragm type "P" or "G".

Housing/internal components with material code "S" can be combined with all seat and diaphragm materials (yellow).

6 Options

D

E*

Differential pressure connection

External impulse connection (standard 5/8"-20 UNS)

*The welded nipple is provided for connecting a pipe with ø 10. Included are a Swagelok nut and a front and rear clamping ring.

(Specials on request).

7 Specials

- X0 If you require, for example, ATEX, PED, special
- connections, external control, rain hood, a fixed X1 setting for P2 ..., please enter an X in this field with X2
- the number of desired Specials. Each of the specials •
- must be described in writing. •
- For special versions and certifications, please contact Xn the manufacturer or the appropriate sales representative.

Fl	Flow table for seat 20 [flow quantities in Nm ³ /h]												
P1	[mbar rel.]	2	5	10	16	25	40	50	80	100	160	250	400
	Atm.	8	12	18	22	28	35	39	50	55	70	88	110
[mbar rel.]	-2	11	15	19	23	29	36	40	50	55	70	88	110
P2 [mt	-5	15	17	21	25	30	37	41	51	56	71	88	110
	-10	19	21	25	28	32	39	43	52	58	72	89	111

It is recommended to design for operation at a maximum of 70% of the flow values. P1 = regulating pressure

Installation

The preferred installation position is with vertical diaphragm housing and horizontal input. Pressure fixed unit is adjusted in this position. The output pressure increases by approximately 4 mbar for installation with horizontal diaphragm housing.

The installation position must be specified.

Mounting and start up

- Before connecting the pressure regulator 1 please make sure
- 1.1 to compare the plant data with the name plate
- 1.2 the values marked on the name plate are the 2.2 the setting can be secured with a seal. values measured during our functional inspection
- 1.3 to check the corrosion resistance of the material
- 1.4 to blow out impurities in the pipes
- 1.5 to note the flow direction it is marked with an arrow on the housing
- 1.6 to open inlet pipes slowly.

- 2 LPST adjust reduced pressure: (Relative pressure)
- 2.1 set a light flow (1Nm³ /h). Set the pressure +/- as required using a hexagonal wrench
- Adjust the LPST differential pressure (-D) with 3 the servo-regulator
- 3.1 if the D-connection is pressurised with the servo-pressure, the working pressure is added by the servo-pressure.